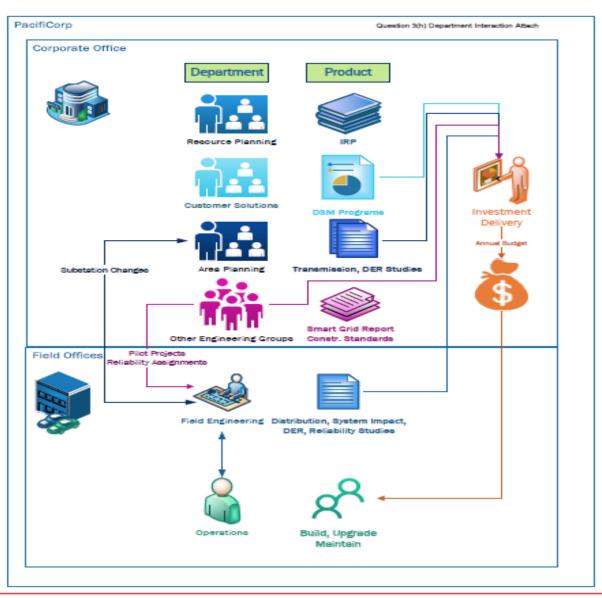
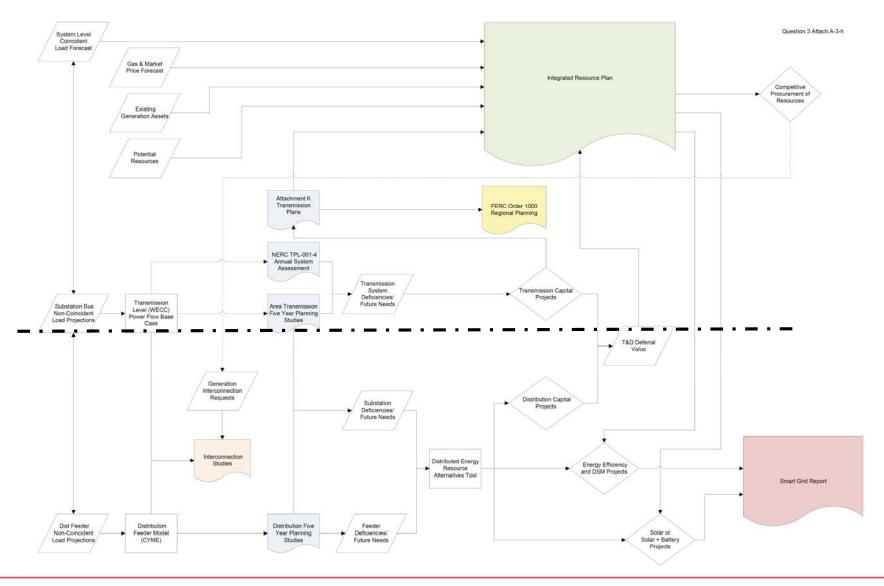
Current Distribution System Planning Processes





Department Interaction Diagraph

Multiple Planning Processes / Drivers

3

Distribution system studies are a component of the larger planning process, providing input into many other studies and processes

Planning Processes and Study Horizons

- Area planning and distribution five year studies
 - Evaluate limiting conditions on equipment (e.g., transformers, regulators, reclosers, wires)
 - Seasonal peak and minimum load conditions, 20% exceedance
 - Limiting credible distributed generation dispatch cases
 - 5 / 10 year horizon
- Long term resource planning (IRP, etc.)
 - Average system peak loads, 50% exceedance
 - Ensure ability to meet adequacy requirements in all hours, not just credible extremes
 - 20 year horizon
- Transmission level studies (NERC TPL, FERC Order 1000)
 - Meet specific system performance criteria for peak and credible stressed conditions
 - Bulk power transmission across larger areas
 - 1, 5 and 10 year horizon

Periodic Five Year Planning Studies

- All distribution system planning studies are completed on a 5 year cycle. Studies can vary in frequency class from one to five.
 - Class 1 studies are scheduled to be updated each year. Class 5 studies are scheduled to be updated every five years.
- Study schedules are evaluated each year and studies may be shifted to occur sooner or later depending on a number of factors

Ad-hoc Studies

- Typically driven by load, generation interconnection service or transmission service requests
- Study is generally focused on a limited area, and the immediate effects of the request on reliability and load service

Distribution Plan Underlying Drivers

- Net load changes
 - Constantly changing loads from customer driven needs such as adding a operational shift, major renovations, closures, new load requests or generation
 - Planning for the future customer needs and preferences
 - Feeder and substation seasonal peak loads and growth rates
 - Feeder and substation minimum and daylight minimum loads
 - Anticipated block load additions (short term and high probability)
 - Electric vehicle adoption targeted studies
 - Generation scenarios (high and low output)
- Reliability
 - Outage Data Collection for Reliability Analysis
 - Cost Effective Improvements

- Distribution resources
 - Net metering projects
 - As of December 2019 there was 77 MW of net-metering over ~7,500 projects
 - Pending: 7 MW from 253 projects
 - Oregon and FERC jurisdictional interconnections
 - As of December 2019 there was 261 MW
 - Pending: 67 MWs
 - Oregon Community Solar Program
 - Currently have 11 applications
- Preparing the grid for the future
 - Substation and feeder SCADA analog and status capability upgrades
 - Bi-directional controls and protection

As the uses of the delivery system changes the number of credible scenarios rapidly expand. For example, light loading conditions.

Distributed Energy Resource Planning Studies and Tools

Studies

- Conservation Potential Assessment (CPA)
 - Energy Efficiency
 - Demand Response
- Private Generation
 - Reciprocating Engines
 - Micro-turbines
 - Small Hydro
 - Solar Photovoltaics
 - Small Wind
- Bulk Energy Storage Study

Tools

- Transmission
 - Production cost model (GRIDVIEW)
 - Power flow model (PSS/E)
 - SCADA / PI Historian
 - ASPEN
- Distribution
 - Power flow model (CYME)
 - CYME Gateway (Data)
 - FAAR/Fastmap
 - Reliability model (GREATER, FIRE)
 - SCADA / PI Historian
 - DER Screening tool
 - ASPEN
- Customer
 - Production/load resource meters
 - AMI meters

Distribution Planning Process Opportunities

- More dynamic and holistic view to inputs and outputs
 - DER
 - EV
 - Customer preferences
 - Policy and opportunity driven trends
 - Integration with neighborhood/community/city plans and goals
- Improve planning models, information and assumptions
 - Continued development of customer load data, with much higher granularity possible than in legacy tool
 - Richer dataset for better precision of customers' uses through application of AMI data analytics
 - DER Screening Tool → DER Impact Tool (Locational Planning)
- Improve system operation and flexibility
- Modernize the energy grid / increased deployment of advanced technologies
- Customer side solutions
- More efficient utilization of existing system capacity