## Idaho Power Distribution



## **System Plans**



UM 2005 – Workshop #2 February 12, 2020

# Methods of Evaluating the Distribution System



## Seasonal peak demand checks

Occur each spring and fall following seasonal peak demands



## Small area studies

Power flow analyses of substations, transformers, and circuits to ensure sufficient capacity to serve future load (3-year rotation or as needed to serve new customers)



#### **Electrical Plans**

Long-term plans for substations and transmission, developed in consultation with community advisory committees (10-year intervals)



#### Protection coordination studies

Review of settings between distribution circuit protective equipment – relays, reclosers, fuses, etc. (5-year intervals unless triggered by large load or DER)



#### Fault analyses and power quality studies

Performed when needed for fault events or customer compliance verification with IEEE 519

## Tools Used to Conduct Analyses & Develop Plans

- Distribution modeling (DNV GL Synergi)
  Synergi simulates power distribution feeders, networks, and substations
- Hosting capacity analysis (EPRI DRIVE) Used to determine distribution system's ability to integrate DERs feeder-by-feeder
- **Time-series analysis** (EPRI OpenDSS) Power system simulation to explore capabilities and limitations of distribution system
- DER modeling (NREL SAM, SNLGridPV)
  SAM calculates performance and financial metrics of renewable energy systems;
  GridPV simulates integration of distributed generation
- Sub-transmission modeling (PowerWorld Simulator)

## DSP's Relationship to Other Idaho Power Plans and Reports

- **IRP:** DSP informs the calculations of T&D deferral value included in EE costeffectiveness test, and T&D deferral value of distributed energy in IRP resource stack.
- Smart Grid Reports: Small area studies identify capacity constraints. When those constraints can be cost-effectively addressed with non-wires alternatives, they may be included in the Smart Grid Report (Example: Jordan Valley Energy Storage/Microgrid)
- **Transmission local planning:** Electrical plans produced from distribution system planning directly inform the need/location of transmission lines and substations. Small area studies inform timing of transmission system capacity additions.
- Interconnection studies: Distribution plans are evaluated when generation developers request interconnection to a distribution circuit.

## **Plans: Non-Wires Solutions**

- Non-wires projects assessed against traditional solutions. Decision making based on cost-effectiveness.
- Non-monetized benefits considered: Experience with new solutions, future flexibility, customer satisfaction
- *Example:* Jordan Valley battery solution to shift peak demand was determined to be a cost-effective way to address a capacity constraint

## **Plans: DG/DER**

- Integration: Idaho Power implemented software and processes for analyzing DER integration requests to ensure safe and reliable circuit operation within parameters
- Locational DER assessments: T&D locational capacity deferral value analysis through Resource Value of Solar proceeding
- Hosting capacity analysis: DRIVE model used to calculate hosting capacity at the feeder level with system-wide hosting capacity analysis completed in 2019

### **Plans: Smart Inverters**

- Idaho Power plans to require smart inverter installations with DER integration consistent with the yet to be finalized IEEE 1547 standards
- Smart inverter use will allow for additional DER penetration